MOB: | 2024/4 |
Szerzők: | Baggio, Stephanie; Infanti, Alexandre; Giardina, Alessandro; Razum, Josip; King, Daniel L.; Snodgrass, Jeffrey G.; Vowels, Matthew; Schimmenti, Adriano; Király, Orsolya; Rumpf, Hans-Juergen; Vögele, Claus; Billieux, Joël |
Tárgyszavak: | JÁTÉKOK; SZENVEDÉLYBETEGSÉGEK; INTERNET; TANULÁS |
Folyóirat: | Journal of Behavioral Addictions - 2024. 13. évf. 4. sz. [https://akjournals.com/view/journals/2006/2006-overview.xml] |
User-avatar bond as diagnostic indicator for gaming disorder: A word on the side of caution : Commentary on: Deep learning(s) in gaming disorder through the user-avatar bond: A longitudinal study using machine learning (Stavropoulos et al., 2023) / Stephanie Baggio [et al.]
Bibliogr.: p. 981-983. - Abstr. eng. - DOI: https://doi.org/10.1556/2006.2024.00032
In: Journal of Behavioral Addictions. - ISSN 2062-5871, eISSN 2063-5303. - 2024. 13. évf. 4. sz., p. 885-893 : ill.
In their study, Stavropoulos et al. (2023) capitalized on supervised machine learning and a longitudinal design and reported that the User-Avatar Bond could be accurately employed to detect Gaming Disorder (GD) risk in a community sample of gamers. The authors suggested that the User-Avatar Bond is a "digital phenotype" that could be used as a diagnostic indicator for GD risk. In this commentary, our objectives are twofold: (1) to underscore the conceptual challenges of employing User-Avatar Bond for conceptualizing and diagnosing GD risk, and (2) to expound upon what we perceive as a misguided application of supervised machine learning techniques by the authors from a methodological standpoint. Kulcsszavak: machine learning, gaming disorder, user-avatar bond, classification, diagnosis