Egyszerű keresés   |   Összetett keresés   |   Böngészés   |   Kosár   |   Súgó  


Részletek

A cikk állandó MOB linkje:
http://mob.gyemszi.hu/detailsperm.jsp?PERMID=165646
MOB:2024/4
Szerzők:Baggio, Stephanie; Infanti, Alexandre; Giardina, Alessandro; Razum, Josip; King, Daniel L.; Snodgrass, Jeffrey G.; Vowels, Matthew; Schimmenti, Adriano; Király, Orsolya; Rumpf, Hans-Juergen; Vögele, Claus; Billieux, Joël
Tárgyszavak:JÁTÉKOK; SZENVEDÉLYBETEGSÉGEK; INTERNET; TANULÁS
Folyóirat:Journal of Behavioral Addictions - 2024. 13. évf. 4. sz.
[https://akjournals.com/view/journals/2006/2006-overview.xml]


  User-avatar bond as diagnostic indicator for gaming disorder: A word on the side of caution : Commentary on: Deep learning(s) in gaming disorder through the user-avatar bond: A longitudinal study using machine learning (Stavropoulos et al., 2023) / Stephanie Baggio [et al.]
  Bibliogr.: p. 981-983. - Abstr. eng. - DOI: https://doi.org/10.1556/2006.2024.00032
  In: Journal of Behavioral Addictions. - ISSN 2062-5871, eISSN 2063-5303. - 2024. 13. évf. 4. sz., p. 885-893 : ill.


In their study, Stavropoulos et al. (2023) capitalized on supervised machine learning and a longitudinal design and reported that the User-Avatar Bond could be accurately employed to detect Gaming Disorder (GD) risk in a community sample of gamers. The authors suggested that the User-Avatar Bond is a "digital phenotype" that could be used as a diagnostic indicator for GD risk. In this commentary, our objectives are twofold: (1) to underscore the conceptual challenges of employing User-Avatar Bond for conceptualizing and diagnosing GD risk, and (2) to expound upon what we perceive as a misguided application of supervised machine learning techniques by the authors from a methodological standpoint.  Kulcsszavak: machine learning, gaming disorder, user-avatar bond, classification, diagnosis