Egyszerű keresés   |   Összetett keresés   |   Böngészés   |   Kosár   |   Súgó  


Részletek

A cikk állandó MOB linkje:
http://mob.gyemszi.hu/detailsperm.jsp?PERMID=149106
MOB:2021/1
Szerzők:Budai Bettina Katalin; Frank Veronica; Shariati, Sonaz; Fejér Bence; Tóth Ambrus; Orbán Vince; Bérczi Viktor; Novák Kaposi Pál
Tárgyszavak:TOMOGRAPHIA, COMPUTERES, RÖNTGEN-; MÁJ DAGANATAI; DIAGNOSZTIKUS KÉPALKOTÁS
Folyóirat:Imaging - 2021. 13. évf. 1. sz.
[https://akjournals.com/view/journals/1647/1647-overview.xml ]


  CT texture analysis of abdominal lesions : 1. r., Liver lesions / Bettina Katalin Budai [et al.]
  Bibliogr.: p. 23-24. - Abstr. eng. - DOI: https://doi.org/10.1556/1647.2021.00007
  In: Imaging. - ISSN eISSN 2732-0960. - 2021. 13. évf. 1. sz., p. 13-24. : ill.


Artificial Intelligence and the use of radiomics analysis have been of great interest in the last decade in the field of imaging. CT texture analysis (CTTA) is a new and emerging field in radiomics, which seems promising in the assessment and diagnosis of both focal and diffuse liver lesions. The utilization of CTTA has only been receiving great attention recently, especially for response evaluation and prognostication of different oncological diagnoses. Radiomics, combined with machine learning techniques, offers a promising opportunity to accurately detect or differentiate between focal liver lesions based on their unique texture parameters. In this review article, we discuss the unique ability of radiomics in the diagnostics and prognostication of both focal and diffuse liver lesions. We also provide a brief review of radiogenomics and summarize its potential role of in the non-invasive diagnosis of malignant liver tumors.  Kulcsszavak: radiomics, texture analysis, machine learning, abdominal imaging, liver